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APPENDIX A 

 
ELLCHI: A PROGRAM FOR  

THE SIMULATION OF  

SUPERHUMP LIGHT CURVES  
 

‘Great. What’s the name of this cocktail?’ 

‘Masetti and sons.’ 

(Benni 1996) 

 

A.1. INTRODUCTION 

 

During the study of the behaviour of X-ray Nova Ophiuchi 1993 (=V2293 Oph; 

see Ch. 4) in the outburst phase, the problem of interpreting the light curve shape of 

this object arose out. This point can also be extended to double systems, i.e. the SU 

UMa-type DNe, which present the superhump phenomenon during their stronger 

eruptions (the so-called superoutbursts; see Ch. 2). 

The main reason which stimulated this search was the fact that, until now, the 

theoretical studies concerning the superhump phenomenon were devoted to the 

description of its genesis, its development and its decay (Whitehurst 1988a, 1988b, 

1994;  Hirose & Osaki 1990, 1993; Whitehurst & King 1991) without making any 

conjecture on the shape of the light curve, in particular on the reason for its 

asymmetry. 

Therefore, a simplified model of an erupting system with ongoing superhumps has 

been constructed, so that a physical interpretation to the sawtooth-shaped light curve 

observed in these cases could be given and the lack of explanations to the light curve 

modulation asymmetry could be filled in, even if in an approximate way. As it will be 

clear further on, the described model uses the hypothesis by Vogt (1982) and places 
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the origin of the superhump modulation on the external edge of the disk, and 

precisely in the region located around the hot spot. 

 

A.2. THE ALGORITHM 

 

As already mentioned earlier in Ch. 4 of this Thesis, it has been hypothesized that 

the superhump is produced by the periodic variation of the distance R from the 

collapsed object of the impact point on the accretion disk of the gas stream coming 

from the secondary. All this according to Eq. (1.13) which, as already illustrated, 

gives the luminosity produced by means of the accretion mechanism. 

As it can be easily understood, the distance R is needed to vary cyclically if a 

periodic modulation is to be obtained, and this is possible only if the disk is elliptic in 

shape. Moreover, in order to get a superhump period slightly longer than the orbital 

one, the disk should precess slowly in the same direction of the orbital motion. Both 

these hypotheses are confirmed by the theoretical studies of superhumps by 

Whitehurst (1988a, 1988b). 
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Fig. A.1. Geometry of the superhump model described in the text.  
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Therefore, in order to analyze this variation, the program ELLCHI has been 

written: it computes the distance R in correspondence of 1000 points, equidistant in 

phase and placed all along the elliptic disk border. Then, the program calculates the 

intersection between an ellipse with focus coincident with the origin of axes and a 

parabola branch in uniform rotation with constant angular velocity ω around the 

origin itself (which is thus the place in which the compact object is located). Clearly, 

in order to shift from the rotating system x’y’ to the fixed system xy of Fig. A.1 the 

following coordinate transformation for a rotated system is needed: 
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Figure A.1 shows the geometry of the problem. We chose a parabola brach to 

represent the gas stream coming from the secondary because it is the curve that better 

fits, at a first approximation, the trajectory of a test particle coming from infinity with 

negligible initial velocity. 

The orbital separation a of the system was chosen as measurement unit for the 

distances. The “string method” (see e.g. Serotti & Sturlese 1984) is used to compute 

the intersection between the ellipse and the parabola branch, determined by solving 

the system of equations given by these two curves. This is 
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where ϕ = ωt represents the angle of which the parabola is rotated, at time t, with 

respect to the initial position (when the fixed and the rotated systems are coinciding), 

while a, b, d and cc are the geometric parameter describing the shapes of the ellipse 

(the first two) and of the parabola (the other two). Once that the coordinates xint and 

yint of the intersection are known, its distance from the origin is computed; from it, 

the accretion luminosity is evaluated by means of Eq. (1.13), here slightly modified 

in order to take into account that the superhump emission comes only from a fraction 
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of the disk (i.e. the hot spot region). This modification is such that the hot spot 

parameter ββββ is introduced: this parameter represents the ratio between the 

luminosity of the stream impact zone and that of the whole accretion disk. Moreover, 

it was decided that the luminosity value is normalized to the mean luminosity value 

of the modulation, so that the mean magnitude of the light curve is equal to zero. 

The result may then be compared to an observed light curve in order to find the 

ellipse eccentricity, the phase shift between the synthetic and the observed light 

curves, the value of β and the mean magnitude; the parameters of the theoretical light 

curve that better fit the observed data are computed by means of a least-squares 

method. 

 

A.3. THE PROGRAM 

 

Going more into the details of the program ELLCHI, it can be said that it reads 

from the ancillary file ELLIPSE.INPUT the values of the parabola parameters, the 

number of bins dividing the abscissa interval over which each intersection is to be 

found and the uncertainty associated with the coordinates of each intersection. Then, 

the semimajor axis and the eccentricity of the ellipse, as well as the value of β, the 

mean magnitude value and the phase shift of the light curve are requested as 

keyboard input. 

After having acquired these data, the program checks if the intersection between 

the ellipse and the parabola branch is verified (otherwise it requires a modification of 

the parameters of the curves) and computes it over 1000 different points, equidistant 

in phase, by rotating the parabola branch by an angle 2π/1000 every new cycle of 

intersection search. In order to simplfy this task, the search method has been 

separately applied on each of the four cartesian plane quadrants.  

The method used to calculate the intersection is, as said in the previous Section, 

the “string method”: it is based on the computation of the difference between the 

ordinate values of the two curves (the ellipse and the parabola branch) on the left and 

right borders of the initial abscissa bin [x1, x2]; then, the two values are compared. 
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This procedure is applied until the program finds the bin inside which the difference 

between the values changes its sign: then, the procedure is repeated on this bin which 

will be divided into smaller bins until the requested precision is achieved. 

Once the values of the intersections have been obtained, for each of them the 

distance to the origin is computed and, from it, the accretion luminosity (taking also 

into account the hot spot parameter β) and its corresponding magnitude by using the 

Pogson’s formula 

 

.
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As the luminosity is normalized to the mean light curve luminosity, the modulation 

has a mean magnitude equal to zero. 

After all this, the program writes 3 output files with names ELLISSE.TAB, 

PARABOLA.TAB and ELLIPSE.TAB, the first one containing phases and magnitudes 

of the superhump synthetic light curve, the second the coordinates of the points on 

the parabola at the initial epoch of computation, and the third the coordinates of the 

points belonging to the ellipse. 

Finally, the program asks if one wants to compare the synthetic light curve with a 

phase-folded series of observational data points. If so, the synthetic light curve is 

adapted to the phase shift and magnitude level of the observational one by means of 

the values for these two quantities as given in input at the beginning of the program. 

Then, an error parameter from the comparison between the two curves is computed 

by using a least-squares method. In this way, playing with the values of eccentricity, 

phase shift, mean magnitude and β it is possible to construct the synthetic light curve 

which best fits the observational data. 

 

A.4. THE RESULTS 

 

Thus, by modeling the superhump phenomenon with this simple FORTRAN code, 

one can obtain theoretic light curves which are qualitatively and quantitatively 
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similar to the real ones and, by means of a comparison between them, one can extract 

important parameters concerning the outbursting accretion disk. 

In particular, the modulation amplitude ∆m, the light curve asymmetry ξ (that is 

the phase ratio between the rising and the declining branches of the light curve; see 

Ch. 2) and the phase shift ∆ϕ (that is, the distance between the inital light curve 

phase and that of the minimum light) are affected by 5 parameters: the semimajor 

axis a of the elliptic disk, the hot spot parameter β, the disk eccentricity e, as well as 

the concavity d and the distance cc of the vertex from the origin of axes which 

characterize the parabolic stream of matter. 

The effects of each of these 5 quantities on the three main characteristics of the 

synthetic superhump light curve were then evaluated by varying each one of these 

single parameters. The results are reported in Table A.I. 

 
Table A.I. Summary of the effects produced on the synthetic superhump light curve by varying the 

parameters describing the ellipse-parabola system geometry and the properties of the elliptic disk  

 

increasing 

parameter 

 

∆m 
 

ξ 
 

∆ϕ 

a � � � 

e � � � 

β � �� �� 

d �� � � 

cc �� � � 

 

As it can be seen, and as it was expected, the increase of both β and e makes the 

light curve amplitude wider, and this because the impact area and the difference 

between the maximum and minimum distance of it from the origin of axes (where the 

compact object is located) get larger, respectively. As a increases, instead, ∆m 

reduces because the disk gets larger and all the impact points are therefore more 

distant from the origin of axes. The parameters d and cc does not produce any effect 

on ∆m. Concerning the light curve asymmetry, it increases as e and cc increase, while 

gets smaller as a and d increase, for geometric reasons in both cases. On the contrary, 

the parameter β does not produce any effect on ξ. Finally, the phase shift increases as 
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each one of these 5 parameters increase but β, which does not have any influence on 

∆ϕ. 

Therefore, if one examines Table A.I one last time, it can be said that the system 

parameters can be divided into three categories: horizontal parameters, which act on 

ξ and ∆ϕ and then modify the superhump light curve shape by altering quantities 

which are measurable along the phase axis (x axis); vertical parameters, which 

modify ∆m, and then their effect is measurable on the magnitude axis (y axis); and 

plane parameters, which can modify the light curve along both axes. 

In conclusion, despite the simple idea at the basis of this model, the synthetic light 

cuves obtained from it are quite similar to the observed ones. It should be noted that 

this result comes from purely geometric considerations. In any case, the code 

illustrated here can be improved by introducing other important parameters (such as, 

for example, the mass ratio q, the mass loss rate &M  from the secondary star, the 

temporal evolution of the superoutburst, etc.) which were not considered in this 

treatment in order to keep the program reasonably simple.  
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ALPHABETICAL LIST OF THE VARIABLES  

USED IN THE PROGRAM 

 

a  : semimajor axis of the elliptic disk 

alpha1 : value obtained by inserting in the parabola equation the point with 

coordinates (x1, y1) belonging to the ellipse 

alpha2 : value obtained by inserting in the parabola equation the point with 

coordinates (x2, y2) belonging to the ellipse 

b  : semiminor axis of the elliptic disk 

beta  : ratio between the hot spot and the disk emissions  

c  : position of the elliptic disk focus occupied by the compact object 

cc  : distance of the parabola vertex from the origin of axes 

chi  : value of the least-squares parameter computed from the comparison 

between the synthetic and the observed light curves 

conf  : answer to the request of comparison between the synthetic and the 

observed light curves 

curve : name of the file containing the observations folded with the 

superhump period 

d  : parabola concavity index (coefficient of x2) 

delphi : phase difference between the observed and the synthetic light curves 

delta : determinant of the equation which allows computing xint 

dummy1 : ancillary variable for the alpha1 value computation 

dummy2 : ancillary variable for the alpha2 value computation 

dw  : phase increment of the synthetic light curve 

dx  : width of the single abscissa bin inside which the abscissa of the 

parabola-ellipse intersection point is searched 

dxe  : increment along the abscissas used for computing the ellipse points 

dxp  : increment along the abscissas used for computing the parabola points 

e  : eccentricity of the elliptic disk 

eps  : precision in the computation of the parabola-ellipse intersection 
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i  : cycle counter indicating the actual bin in which the parabola-ellipse 

intersection is searched 

ii  : cycle counter for the comparison between the two light curves (least-

squares parameter computation) 

j  : cycle counter for the computation of ellipse and parabola points 

k  : cycle counter for the phase increment of the synthetic light curve 

l  : cycle counter for the comparison between the two light curves 

m  : vector containing the magnitudes of the synthetic light curve 

mag  : magnitude of the synthetic light curve at a given phase w 

mmean : mean magnitude of the observed light curve 

np  : starting number of bins in which is divided the interval of abscissas 

over which the abscissa of the intersection is searched 

nstep : actual number of bins in which is divided the interval of abscissas 

over which the abscissa of the intersection is searched 

ph  : vector reporting the phases of the magnitudes containing in m 

rip  : answer to the request of restarting the program 

ro  : distance (at phase w) from the origin of axes of the intersection (hot 

spot location) between the parabola an the ellipse 

twopi : 2π 

w  : phase of the synthetic light curve 

x  : vector containing the observed magnitudes (column 1 of file curve) 

x1  : starting abscissa of bin dx 

x2  : ending abscissa of bin dx 

x2bis : ancillary variable for the computation of the precision of the solution 

abscissa 

xe  : abscissa of a generic point on the ellipse 

xfin  : ending abscissa of the interval over which the abscissa of the 

intersection is searched 

xin  : starting abscissa of the interval over which the abscissa of the 

intersection is searched  
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xint  : value of the intersection between the parabola and the abscissas axis 

at a given phase w 

xmin  : ancillary variable for the comparison between the synthetic and the 

observed light curves 

xmed  : (approximated) abscissa of the intersection between parabola and 

ellipse at phase w 

xp  : abscissa of a generic point on the parabola 

y  : vector containing the phases of the observed magnitudes (column 2 

of file curve) 

y1  : ordinate of the point with abscissa x1 and located on the ellipse; this 

value is to be compared with the ordinate of the point of abscissa x1 

and belonging to the parabola 

y11  : ordinate of the point with abscissa x1 and placed on the ellipse 

where y > 0 

y12  : ordinate of the point with abscissa x1 and placed on the ellipse 

where y < 0 

y2  : ordinate of the point with abscissa x2 and located on the ellipse; this 

value is to be compared with the ordinate of the point of abscissa x2 

and belonging to the parabola 

y21  : ordinate of the point with abscissa x2 and placed on the ellipse 

where y > 0 

y22  : ordinate of the point with abscissa x2 and placed on the ellipse 

where y < 0 

ye  : ordinate of a generic point on the ellipse 

ymed  : (approximated) ordinate of the intersection between parabola and 

ellipse at phase w 

yp  : ordinate of a generic point on the parabola 

yy1  : squared value of the ordinate of the ellipse point with abscissa x1 

yy2  : squared value of the ordinate of the ellipse point with abscissa x2 

yye  : squared value of ye 
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  PROGRAM ELLCHI 
  real*8 ro,w,a,b,c,cc,d,yy1,alpha1,y11,y12,xin,xfin 
  real*8 dx,alpha2,y1,y2,delphi 
  real*8 dw,twopi,x1,x2,yy2,y21,y22,xmed,ymed,xint 
  real*8 dxp,dxe,xp,yp,xe,yye,ye,dummy1,dummy2,delta 
  real*8 mmean,e,x(10000),y(10000),ph(1000),m(1000) 
  real*8 chi,eps,x2bis,beta,mag,xmin,w,ro 
  character*1 conf,rip,curve*20 
  integer nstep,i,k,j,np,l,ii 
  parameter(twopi=6.283185307) 
2000  open(unit=10,file='ellipse.input',status='old') 
  read (10,fmt=*) cc,d,np,eps 
  close(unit=10) 
  write(*,*) ' ' 
  write(*,*) 'Insert a, e, beta, magmean & delta phi' 
  write(*,*) '(e=0.64 per Whitehurst)' 
  write(*,*) ' ' 
  read(*,*) a,e,beta,mmean,delphi 
  write(*,*) ' ' 
  c=a*e 
  if((a-c).lt.cc) then 
   write(*,*) ' ' 
   write(*,*) 'In some parts no intersection' 
   write(*,*) 'is found: you should change' 
   write(*,*) 'something (a, e, or cc).' 
   write(*,*) ' ' 
   stop 
  end if 
  b=sqrt(a**2-c**2) 
  cc=-cc 
  open(unit=1,file='ellisse.tab',status='new') 
c--------------------------- 
  dw=1./1000.d0 
  do 10 k=999,0,-1 
   w=0.0001+k*dw 
   xin=-(a+c) 
   xfin=a-c 
   nstep=np 
5   x1=xin 
   do i=1,nstep 
    dx=(xfin-xin)/nstep 
    x2=x1+dx 
 
c-----------  COMPUTATION OF ALPHA1 
 
     yy1=b**2*(1.-((x1+c)/a)**2) 
      if(yy1.lt.0) yy1=0. 
      y11=sqrt(yy1) 
       y12=-sqrt(yy1) 
           if(w.ge.0..and.w.lt.0.25) then 
        delta=sin(twopi*w)**2-4.*cc*d*cos(twopi*w)**2 
         if(delta.lt.0) delta=0 
       xint=(sin(twopi*w)+sqrt(delta))/ 
 &      (2.*d*cos(twopi*w)**2) 
      if(abs(xint).lt.(a-c)) then 
          y1=y11 
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         else 
           y1=y12 
      end if 
     end if 
     if(w.ge.0.25.and.w.lt.0.5) then 
        delta=sin(twopi*w)**2-4.*cc*d*cos(twopi*w)**2 
        if(delta.lt.0) delta=0 
         xint=(-sin(twopi*w)-      
 &       sqrt(delta))/(2.*d*cos(twopi*w)**2) 
        if(abs(xint).lt.(a+c)) then 
         y1=y12 
      else 
         y1=y11 
      end if 
     end if 
     if(w.ge.0.5.and.w.lt.0.75) y1=y12 
     if(w.ge.0.75.and.w.lt.1.) then 
        delta=sin(twopi*w)**2-4.*cc*d*cos(twopi*w)**2 
        if(delta.lt.0) delta=0 
        xint=(sin(twopi*w)+sqrt(delta))/ 
 &      (2.*d*cos(twopi*w)**2) 
        if(abs(xint).lt.(a-c)) then 
         y1=y11 
      else 
       y1=y12 
      end if 
     end if 
     if(w.lt.0.5) then 
      if(y1.lt.-x1/tan(twopi*w)) then 
       x1=x1+dx 
        if(i.lt.nstep) go to 333 
       if(i.eq.nstep) then 
         nstep=nstep*10 
         go to 5 
       end if 
        end if 
      end if 
     if(w.ge.0.5.and.w.lt.1.) then 
      if(y1.gt.-x1/tan(twopi*w)) then 
            x1=x1+dx 
       if(i.lt.nstep) go to 333 
       if(i.eq.nstep) then 
        nstep=nstep*10 
         go to 5 
         end if 
       end if 
     end if 
     dummy1=(y1*cos(twopi*w)-x1*sin(twopi*w)-cc)/d 
     if(dummy1.lt.0.) dummy1=0. 
     alpha1=(x1*cos(twopi*w)+y1*sin(twopi*w))- 
 &     sqrt(dummy1) 
      if (alpha1.eq.0.) then 
        xmed=x1 
         ymed=y1 
        go to 1000 
     end if 
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c---------  COMPUTATION OF ALPHA2 
 
         yy2=b**2*(1.-((x2+c)/a)**2) 
      if(yy2.lt.0) yy2=0.  
     y21=sqrt(yy2) 
     y22=-sqrt(yy2) 
        if(w.ge.0..and.w.lt.0.25) then 
          delta=sin(twopi*w)**2-4.*cc*d*cos(twopi*w)**2 
       if(delta.lt.0) delta=0 
        xint=(sin(twopi*w)+sqrt(delta))/ 
 &      (2.*d*cos(twopi*w)**2) 
       if(abs(xint).lt.(a-c)) then 
         y2=y21 
        else 
        y2=y22 
      end if 
     end if 
     if(w.ge.0.25.and.w.lt.0.5) then 
       delta=sin(twopi*w)**2-4.*cc*d*cos(twopi*w)**2 
        if(delta.lt.0) delta=0 
       xint=(-sin(twopi*w)- 
 &      sqrt(delta))/(2.*d*cos(twopi*w)**2) 
        if(abs(xint).lt.(a+c)) then 
         y2=y22 
       else 
          y2=y21 
       end if 
     end if 
     if(w.ge.0.5.and.w.lt.0.75) y2=y22 
      if(w.ge.0.75.and.w.lt.1.) then 
       delta=sin(twopi*w)**2-4.*cc*d*cos(twopi*w)**2 
       if(delta.lt.0) delta=0 
       xint=(sin(twopi*w)+sqrt(delta))/ 
 &      (2.*d*cos(twopi*w)**2) 
       if(abs(xint).lt.(a-c)) then 
        y2=y21 
      else 
       y2=y22 
      end if 
     end if 
     dummy2=(y2*cos(twopi*w)-x2*sin(twopi*w)-cc)/d 
      if(dummy2.lt.0.) dummy2=0. 
      alpha2=(x2*cos(twopi*w)+y2*sin(twopi*w))- 
 &     sqrt(dummy2) 
      if (alpha2.eq.0.) then 
       xmed=x2 
      ymed=y2 
       go to 1000 
     end if 
 
c---------  COMPARISON ALPHA1-ALPHA2 
 
     if(y2.ge.0) then 
       if(alpha2.gt.0..and.alpha1.lt.0..or. 
 &      alpha2.lt.0..and.alpha1.gt.0.) then 
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       if(x2.eq.0) then 
           x2bis=(x1+x2)/2. 
          else 
        x2bis=x2 
       end if 
         if (dabs((x2-x1)/x2bis).le.eps) goto 999  
         xin=x1 
             xfin=x2 
            goto 5 
           else if (alpha2.lt.0..and.alpha1.lt.0.) then 
       if(i.eq.nstep) then 
         nstep=nstep*10 
         go to 5 
       end if 
             x1=x2 
       else if (alpha2.gt.0..and.alpha1.gt.0.. 
 &           and.i.eq.nstep) then 
          nstep=nstep*10 
          go to 5 
          endif 
     else if(y2.lt.0) then 
      if(alpha2.gt.0..and.alpha1.lt.0.. 
 &       or.alpha2.lt.0..and.alpha1.gt.0.) then 
         if(x2.eq.0) then 
            x2bis=(x1+x2)/2. 
          else 
         x2bis=x2  
       end if 
        if (dabs((x2-x1)/x2bis).le.eps) goto 999 
         xin=x1 
             xfin=x2 
              goto 5 
            else if (alpha2.gt.0..and.alpha1.gt.0.) then 
       if(i.eq.nstep) then 
         nstep=nstep*10 
         go to 5 
       end if 
       x1=x2 
        else if (alpha2.lt.0..and.alpha1.lt.0.. 
  &         and.i.eq.nstep) then 
        nstep=nstep*10 
         go to 5 
       end if 
     end if 
333    end do 
c----------------------------- 
999    xmed=(x1+x2)/2. 
    ymed=(y1+y2)/2. 
1000    ro=abs(sqrt(xmed**2+ymed**2)) 
     mag=-2.5*log10(1.-beta+ 
 &    beta*(a/(2*c))*(b**2/(2*a*ro)-1.)) 
      mag=mag+2.5*log10(1.-beta-beta*(a/(4*c))) 
    write(1,'(1x,f6.4,1x,f10.5)') 1.-w,mag 
    nstep=np 
10  continue 
c---------------------------- 
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  close(unit=1) 
  dxp=3./2.*(a+c)/1000. 
  open(unit=2,file='parabola.tab',status='new') 
  do j=0,2000 
   xp=j*dxp 
   yp=d*xp**2+cc 
   write(2,'(1x,f10.5,2x,f10.5)') xp,yp 
  end do 
  close(unit=2) 
  dxe=2.*a/1000. 
  open(unit=3,file='ellisse.tab',status='new') 
  do j=0,1000 
   xe=-(a+c)+j*dxe 
   yye=b**2*(1.-((xe+c)/a)**2) 
   if(yye.lt.0) yye=0 
   ye=sqrt(yye) 
   write(3,'(1x,f10.5,2x,f10.5,2x,f10.5)') xe,ye,-ye 
  end do 
  close(unit=3) 
  write(*,*) ' ' 
  write(*,*) 'COMPARISON WITH DATA POINTS? (y/n)' 
  read (*,'(a)') conf 
  if(conf.ne.'y') go to 3000 
  write(*,*) 'Insert the data points file name' 
  write(*,*) ' ' 
  read (*,'(a)') curve 
  open(unit=20,file=curve,status='old') 
  open(unit=21,file='ellipse.tab',status='old') 
  do l=1,1000 
   read(21,fmt=*) ph(l),m(l) 
    m(l)=m(l)+mmean 
   ph(l)=ph(l)+delphi 
   if(ph(l).lt.0.) ph(l)=ph(l)+1. 
   if(ph(l).gt.1.) ph(l)=ph(l)-1. 
  end do 
  do l=1,10000 
   read(20,fmt=*,end=1999) x(l),y(l) 
   do ii=1,1000 
    xmin=abs(x(l)-ph(ii)) 
    if(xmin.lt.0.0005) then 
     chi=chi+(y(l)-m(ii))**2 
     go to 5000 
    end if 
   end do 
5000  end do 
1999  close(unit=20) 
  close(unit=21) 
  write(*,*) ' ' 
  write(*,'(a,f10.5)') ' Chi squared =', chi 
  chi=0 
  write(*,*) ' ' 
  write(*,*) 'ONCE MORE? (y/n)' 
  write(*,*) ' ' 
  read (*,'(a)') rip 
  if(rip.eq.'y') go to 2000 
3000  continue 
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  write(*,*) ' ' 
  write(*,*) 'BYE BYE!!!!!!!!!!!!!' 
  stop 
  end 


